skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tremblay, Marissa M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding alpine glacier extent during past climate variability is instructive for determining the glacier response to future climate change. Villarrica volcano is a late Pleistocene stratovolcano located in Chile's Southern Volcanic Zone that was covered by the Patagonian Ice Sheet during the last glacial period, and still retains small remnant glaciers today. Moraines preserved several kilometers from the summit on different flanks of the volcano record a history of expanded glacier lengths during the Holocene. However, the precise ages of these moraines are unknown, and the Holocene glacial history of Villarrica remains poorly constrained, limiting our understanding of how glaciers in this region responded to Holocene climate change. To constrain the timing of these moraines, we analyzed cosmogenic 3He in olivine from 25 basaltic andesite moraine boulders for cosmogenic surface exposure dating. Our new chronology reveals multiple late Holocene glacier advances from different flanks of the volcano, with the glaciers culminating and abandoning their moraines during the early Neoglacial period at ∼3355 ± 190 a and ∼1735 ± 215 a, and during the last millennium spanning the Little Ice Age period at ∼720 ± 225 a, ∼370 ± 75 a, and in the last ∼200 years. Our analysis of Holocene climate proxies from south-central Chile indicates that the early Neoglacial advances and subsequent retreat likely reflect increased effective moisture delivered by intensified Southern Westerly Winds and associated shifts in their latitudinal position. In contrast, we interpret the last millennium glacier advances as primarily driven by reduced summer ablation linked to regional cooling, followed by glacier retreat due to increased temperatures. Our chronology and closely spaced moraine positions suggest that glacier retreat on Villarrica, and possibly the broader Southern Volcanic Zone, has been gradual during the late Holocene and interrupted by short-lived advances driven by varying changes in temperature and moisture. 
    more » « less
    Free, publicly-accessible full text available January 1, 2027
  2. Cosmic ray exposure (CRE) ages are used to constrain the orbital and impact history of meteorites and identify their parent body or source region. CRE ages of enstatite (E) chondrites obtained from measurements of 3He are often much younger than 21Ne CRE ages measured in the same meteorite, which is often attributed to diffusive loss of 3He via solar heating during orbit. With knowledge of the diffusion kinetics of 3He in the major minerals making up E chondrites, we can leverage this discrepancy in CRE ages to infer a meteorite’s recent thermal history. To this end, we performed stepwise degassing experiments on fragments of albite, enstatite and kamacite, the dominant minerals in E chondrites, that were irradiated with protons to produce 3He. We find albite displays simple, Arrhenius-dependent 3He diffusion behavior, whereas enstatite and kamacite exhibit somewhat more complex diffusion behavior. We find that cosmogenic 3He will be readily lost from albite in the space environment, enstatite can exhibit significant 3He loss if exposed to high temperatures characteristic of low perihelion on million year time scales, and kamacite is highly retentive of 3He and unlikely to experience direct diffusive loss. These diffusion kinetics parameters can also be used to understand the exposure and thermal histories of other meteorite classes, terrestrial cosmogenic 3He applications, and mantle noble gas systematics. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  3. Cosmogenic isotopes of helium and neon are produced at the Earth’s surface and exhibit a wide range of thermal sensitivities in common minerals. We can take advantage of this range of thermal sensitivities to reconstruct past near surface thermal conditions using cosmogenic noble gas observations. For example, cosmogenic noble gases have been used to study past ambient temperatures, changes in snow cover duration, and wildfire histories. Interpreting cosmogenic noble gas observations requires a model of both production and diffusion that predicts cosmogenic noble gas concentrations for different thermal histories. Additionally, models that characterize the diffusion kinetics of helium or neon in a particular mineral sample are often needed, as laboratory-based diffusion experiments demonstrate that helium and neon diffusion kinetics are sample specific and often complex. At present, various codes are available that can carry out pieces of the modeling, but they are generally not interoperable and are often highly specific to a particular past application, limiting the codes’ use for future applications. Here we present progress on creating a general forward modeling framework for inferring thermal histories using cosmogenic noble gas observations, structured around the concept of proxy system modeling. We will describe the architecture of this model framework as well as provide examples of applying it to new and existing cosmogenic noble gas datasets. 
    more » « less
  4. Abstract. Diffusion properties of cosmogenic 3He in quartz at Earth surface temperatures offer the potential to directly reconstruct the evolution of pastin situ temperatures from formerly glaciated areas, which is important information for improving our understanding of glacier–climateinteractions. In this study, we apply cosmogenic 3He paleothermometry to rock surfaces gradually exposed from the Last Glacial Maximum(LGM) to the Holocene period along two deglaciation profiles in the European Alps (Mont Blanc and Aar massifs). Laboratory experiments conducted onone representative sample per site indicate significant differences in 3He diffusion kinetics between the two sites, with quasi-linearArrhenius behavior observed in quartz from the Mont Blanc site and complex Arrhenius behavior observed in quartz from the Aar site, which weinterpret to indicate the presence of multiple diffusion domains (MDD). Assuming the same diffusion kinetics apply to all quartz samples along eachprofile, forward model simulations indicate that the cosmogenic 3He abundance in all the investigated samples should be at equilibrium withpresent-day temperature conditions. However, measured cosmogenic 3He concentrations in samples exposed since before the Holocene indicate anapparent 3He thermal signal significantly colder than today. This observed 3He thermal signal cannot be explained with a realisticpost-LGM mean annual temperature evolution in the European Alps at the study sites. One hypothesis is that the diffusion kinetics and MDD modelapplied may not provide sufficiently accurate, quantitative paleo-temperature estimates in these samples; thus, while a pre-Holocene 3Hethermal signal is indeed preserved in the quartz, the helium diffusivity would be lower at Alpine surface temperatures than our diffusion modelspredict. Alternatively, if the modeled helium diffusion kinetics is accurate, the observed 3He abundances may reflect a complexgeomorphic and/or paleoclimatic evolution, with much more recent ground temperature changes associated with the degradation of alpine permafrost. 
    more » « less